
Avoiding deadlocks in lock-sharing systems

Corto Mascle

Joint work with Hugo Gimbert, Anca Muscholl and Igor Walukiewicz

April 12th 2022



Dining philosophers



Dining philosophers



Dining philosophers



Dining philosophers



Dining philosophers



Dining philosophers



Dining philosophers



Dining philosophers



Which model?

Many models exist for distributed synthesis:
→ Zielonka automata
→ Petri nets
→ Processes with shared variables

We would like a simple model that allows very little communication
between processes.



Which model?

Many models exist for distributed synthesis:
→ Zielonka automata
→ Petri nets
→ Processes with shared variables

We would like a simple model that allows very little communication
between processes.



Lock-sharing systems

Lock-sharing system

Let Proc be a set of processes and T a set of locks.
A lock-sharing system (LSS) is a family of finite transition systems
AP = (SP ,ΣP , δP , initP ), one for each process P .

Transitions include operations on tokens :
δP : SP × ΣP → OpT × SP with OpT = {acqt, relt | t ∈ T} ∪ {nop}.

Intuitive semantics: a process holds some of the locks and cannot
acquire a lock that is not free or release a lock it does not hold.

We split each set of actions into controllable and uncontrollable ones
ΣP = Σc

P ⊔ Σu
P .



Lock-sharing systems

Lock-sharing system

Let Proc be a set of processes and T a set of locks.
A lock-sharing system (LSS) is a family of finite transition systems
AP = (SP ,ΣP , δP , initP ), one for each process P .

Transitions include operations on tokens :
δP : SP × ΣP → OpT × SP with OpT = {acqt, relt | t ∈ T} ∪ {nop}.

Intuitive semantics: a process holds some of the locks and cannot
acquire a lock that is not free or release a lock it does not hold.

We split each set of actions into controllable and uncontrollable ones
ΣP = Σc

P ⊔ Σu
P .



Lock-sharing systems

Lock-sharing system

Let Proc be a set of processes and T a set of locks.
A lock-sharing system (LSS) is a family of finite transition systems
AP = (SP ,ΣP , δP , initP ), one for each process P .

Transitions include operations on tokens :
δP : SP × ΣP → OpT × SP with OpT = {acqt, relt | t ∈ T} ∪ {nop}.

Intuitive semantics: a process holds some of the locks and cannot
acquire a lock that is not free or release a lock it does not hold.

We split each set of actions into controllable and uncontrollable ones
ΣP = Σc

P ⊔ Σu
P .



Strategies

Strategy

A control strategy is a family (σP )P∈Proc of local strategies, with
σP : Σ∗

P → 2ΣP such that Σu
P ⊆ σP (u) for all u.

A local σ-run uP of P is such that for all prefix va of uP , a ∈ σP (v).
A σ-run is a run whose projection on any process P is a local σ-run.

Deadlock
A σ-run u reaches a deadlock if it cannot be extended into a longer
σ-run ua.



Strategies

Strategy

A control strategy is a family (σP )P∈Proc of local strategies, with
σP : Σ∗

P → 2ΣP such that Σu
P ⊆ σP (u) for all u.

A local σ-run uP of P is such that for all prefix va of uP , a ∈ σP (v).
A σ-run is a run whose projection on any process P is a local σ-run.

Deadlock
A σ-run u reaches a deadlock if it cannot be extended into a longer
σ-run ua.



Example

hungry

think
left

right

acqtp+1

acqtp

acqtp

acqtp+1

reltp , reltp+1

reltp

reltp+1

The strategy σ such that σP always selects left and σQ right for some
processes P,Q avoids deadlocks.



The problem

Deadlock avoidance problem

Input: A set of processes Proc, a set of tokens T and an LSS (AP )P∈Proc

Output: Does there exist a strategy σ such that no σ-run reaches a
deadlock?

The same problem can be formulated with partial deadlocks, in which
we give a subset of processes and look for a strategy that avoids
blocking those.



Undecidability

Theorem
The deadlock avoidance problem is undecidable, even with 3
processes and 4 tokens in total.

→ Processes can share information by interleaving lock acquisitions!



Proof scheme: PCP encoding

Let (u1, v1), . . . , (un, vn) be a PCP instance.

P1

P2

C

u
i1 ui2 ui3 · · ·

vj1
vj2

vj3
· · ·

C

Environment chooses

check
i1i2 · · · = j1j2 · · ·

check
ui1ui2 · · · = vj1vj2 · · ·



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0 1

t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0 1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0 1

t

0

1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1

t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1 t

0 1

t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1 t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1 t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1 t

0

1

t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0 1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0 1

t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0 1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1

t

0

1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0 1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1

t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1

t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1

t

0 1

t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1 t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0

1 t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1 t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0 1

t

0

1

t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0

1 t



Proof scheme: Passing information

↓ 0

↓ 1

↑ t ↓ 1 ↑ 0 ↓ t

↑ 1

↑ t ↓ 0 ↑ 1 ↓ t

↑ 0

P

0 1

t

0 1 t

↑ 0

↑ 1

↓ t ↑ 1 ↓ 0 ↑ t

↓ 1

↓ t ↑ 0 ↓ 1 ↑ t

↓ 0

C

0 1

t



Two locks per process

2LSS
A 2LSS is an LSS in which the transitions of each process contain
operations on at most two different locks.

This prevents processes from communicating an unbounded amount
of information.



Patterns

A local run uP of a process P in a 2LSS satisfies one of the following
things:
→ P holds no lock at the end
→ P holds both of its locks at the end
→ P holds only t1 at the end, and its last operation on locks is acqt1
→ P holds only t1 at the end, and its last operation on locks is relt2

The key property of 2LSS is that we can abstract local runs into those
patterns to solve the problem.



Scheduling

Given patterns (patP )P∈Proc, we want to check that local runs with
those patterns can be scheduled into a global run.

We check that a lock is not held by two different processes at the end
of their local run, but this is not sufficient.

↓ 1 ↓ 2

↑ 1

↑ 2

↓ 1

↓ 2

↓ 1 ↓ 2

↑ 1

↑ 2

↓ 1

↓ 2

This is a deadlock but not a reachable one!



Scheduling

Given patterns (patP )P∈Proc, we want to check that local runs with
those patterns can be scheduled into a global run.

We check that a lock is not held by two different processes at the end
of their local run, but this is not sufficient.

↓ 1 ↓ 2

↑ 1

↑ 2

↓ 1

↓ 2

↓ 1 ↓ 2

↑ 1

↑ 2

↓ 1

↓ 2

This is a deadlock but not a reachable one!



Scheduling

Given patterns (patP )P∈Proc, we want to check that local runs with
those patterns can be scheduled into a global run.

We check that a lock is not held by two different processes at the end
of their local run, but this is not sufficient.

↓ 1 ↓ 2

↑ 1

↑ 2

↓ 1

↓ 2

↓ 1 ↓ 2

↑ 1

↑ 2

↓ 1

↓ 2

This is a deadlock but not a reachable one!



Scheduling

We split each local run into two parts, cutting at the last position at
which the process holds no lock up = vpwp.
All vp can be executed sequentially at the beginning of the run.

→ P holds no lock at the end of uP

→ Then wP is empty.

→ P holds both of its locks at the end

→ We can run wP after all the other runs.

→ P holds only t1 at the end, and its last operation on locks is acqt1

→ We can run wP after all the other runs as well.

→ P holds only t1 at the end, and its last operation on locks is relt2

→ We need to be more careful.



Scheduling

We split each local run into two parts, cutting at the last position at
which the process holds no lock up = vpwp.
All vp can be executed sequentially at the beginning of the run.

→ P holds no lock at the end of uP
→ Then wP is empty.
→ P holds both of its locks at the end

→ We can run wP after all the other runs.

→ P holds only t1 at the end, and its last operation on locks is acqt1

→ We can run wP after all the other runs as well.

→ P holds only t1 at the end, and its last operation on locks is relt2

→ We need to be more careful.



Scheduling

We split each local run into two parts, cutting at the last position at
which the process holds no lock up = vpwp.
All vp can be executed sequentially at the beginning of the run.

→ P holds no lock at the end of uP
→ Then wP is empty.
→ P holds both of its locks at the end
→ We can run wP after all the other runs.
→ P holds only t1 at the end, and its last operation on locks is acqt1

→ We can run wP after all the other runs as well.

→ P holds only t1 at the end, and its last operation on locks is relt2

→ We need to be more careful.



Scheduling

We split each local run into two parts, cutting at the last position at
which the process holds no lock up = vpwp.
All vp can be executed sequentially at the beginning of the run.

→ P holds no lock at the end of uP
→ Then wP is empty.
→ P holds both of its locks at the end
→ We can run wP after all the other runs.
→ P holds only t1 at the end, and its last operation on locks is acqt1
→ We can run wP after all the other runs as well.
→ P holds only t1 at the end, and its last operation on locks is relt2

→ We need to be more careful.



Scheduling

We split each local run into two parts, cutting at the last position at
which the process holds no lock up = vpwp.
All vp can be executed sequentially at the beginning of the run.

→ P holds no lock at the end of uP
→ Then wP is empty.
→ P holds both of its locks at the end
→ We can run wP after all the other runs.
→ P holds only t1 at the end, and its last operation on locks is acqt1
→ We can run wP after all the other runs as well.
→ P holds only t1 at the end, and its last operation on locks is relt2
→ We need to be more careful.



Scheduling

Say a local run uP has P take locks t1, t2, then release t2 (but never t1).

In a global run u, this means that the last operation on t1 in u is before
the last operation on t2.

A local run uQ which takes t1 and t2, then releases t1 cannot be
interleaved with uP to form a global run.

Lemma
A family of local runs (uP )P∈Proc can be scheduled into a global run iff

No token is held by two different processes at the end of their
local run.
There is a total order on tokens compatible with the patterns of all
uP .



Abstracting strategies

Abstract strategies

An abstract local strategy for process P is a set of pairs (patP , BlockP ).

To a local strategy σP we associate an abstract one AbsP such that

(patP , BlockP ) ∈ AbsP
⇔

∃uP , δP (σP (uP )) ⊆ {acqt | t ∈ BlockP } × SP

There is a local run respecting σ with pattern patP ending in a
configuration in which all actions available are acquiring a lock from
BlockP .



Example

acq2 acq1

acq1 rel1 live

die

rel2
acq2

acq1, acq2

live

A good strategy here is to first
allow the acq1 loop, then the acq2
transition.

For the first process this strategy
yields the abstract runs
(ε, {1}), (acq1, {2}), (acq1,2rel1, {1}).

For the second one it yields
(ε, {1, 2}), (ε, {2}), (acq1,2rel2, {2}).



Example

acq2 acq1

acq1 rel1 live

die

rel2
acq2

acq1, acq2

live

A good strategy here is to first
allow the acq1 loop, then the acq2
transition.

For the first process this strategy
yields the abstract runs
(ε, {1}), (acq1, {2}), (acq1,2rel1, {1}).

For the second one it yields
(ε, {1, 2}), (ε, {2}), (acq1,2rel2, {2}).



A Σp
2 algorithm...

We translate the problem into a one-turn two-player game:

Step 1: Sys gives for each process P an abstract strategy AbsP .

Step 2: We check (in PTIME) that there exist local strategies yielding
those abstract ones.

Step 3: Env chooses in each AbsP a pair (patP , BlockP ).

Step 4: We check (in PTIME) that the (patP , BlockP )P∈Proc witness a
deadlock: the patP represent local runs that can be scheduled into a
global one, and none of the locks in the BlockP are free at the end.



A Σp
2 algorithm...

We translate the problem into a one-turn two-player game:

Step 1: Sys gives for each process P an abstract strategy AbsP .

Step 2: We check (in PTIME) that there exist local strategies yielding
those abstract ones.

Step 3: Env chooses in each AbsP a pair (patP , BlockP ).

Step 4: We check (in PTIME) that the (patP , BlockP )P∈Proc witness a
deadlock: the patP represent local runs that can be scheduled into a
global one, and none of the locks in the BlockP are free at the end.



A Σp
2 algorithm...

We translate the problem into a one-turn two-player game:

Step 1: Sys gives for each process P an abstract strategy AbsP .

Step 2: We check (in PTIME) that there exist local strategies yielding
those abstract ones.

Step 3: Env chooses in each AbsP a pair (patP , BlockP ).

Step 4: We check (in PTIME) that the (patP , BlockP )P∈Proc witness a
deadlock: the patP represent local runs that can be scheduled into a
global one, and none of the locks in the BlockP are free at the end.



A Σp
2 algorithm...

We translate the problem into a one-turn two-player game:

Step 1: Sys gives for each process P an abstract strategy AbsP .

Step 2: We check (in PTIME) that there exist local strategies yielding
those abstract ones.

Step 3: Env chooses in each AbsP a pair (patP , BlockP ).

Step 4: We check (in PTIME) that the (patP , BlockP )P∈Proc witness a
deadlock: the patP represent local runs that can be scheduled into a
global one, and none of the locks in the BlockP are free at the end.



A Σp
2 algorithm...

We translate the problem into a one-turn two-player game:

Step 1: Sys gives for each process P an abstract strategy AbsP .

Step 2: We check (in PTIME) that there exist local strategies yielding
those abstract ones.

Step 3: Env chooses in each AbsP a pair (patP , BlockP ).

Step 4: We check (in PTIME) that the (patP , BlockP )P∈Proc witness a
deadlock: the patP represent local runs that can be scheduled into a
global one, and none of the locks in the BlockP are free at the end.



...and a lower bound

We reduce the ∃∀SAT problem. We encode valuations as sets of
non-free tokens.
Sys chooses a value for some variables:

acqxi
acqxi

relxi

relxi

And Env chooses the values of the other ones.

acqxi

acqxi



Liveness hypothesis

Locally live strategy

A strategy is locally live if all local σ-run uP can be extended into a
longer local σ-run upa.

Thus the deadlocks can only arise from a bad token distribution.

In terms of abstract strategies, it means that the BlockP component in
the abstract runs cannot be empty.

Thus a process that holds a lock in a deadlock must be blocked by
another one.



Lock graph and deadlock schemes

Let σ be a strategy. Abstract strategies can be represented as a lock
graph Gσ = (T,E) with locks as vertices.

Lock graph

The lock graph Gσ = (T,E) is such that for all P ∈ Proc of abstract
strategy AbsP :

if (acqt1 , {t2}) ∈ AbsP then there is a weak edge t1
P−→ t2.

if (acqt1,t2relt2 , {t2}) ∈ AbsP and (acqt1 , {t2}) /∈ AbsP then there

is a strong edge t1
P
=⇒ t2.



Lock graph and deadlock schemes

We also separate solid and fragile processes.

Lock graph

A process P is fragile if AbsP contains (ε,BlocksP ) for some BlocksP ,
i.e., if P can be blocked without holding any lock.
P is solid otherwise.



Lock graph and deadlock schemes

Let σ be a strategy. A deadlock situation can be represented by a
deadlock scheme.

Deadlock scheme
A deadlock scheme is a pair (BT, ds) with BT ⊆ T and
ds : Proc → E ∪ {⊥} such that:

If ds(P ) = ⊥ then ds(P ) is fragile and AbsP contains some
(ε,BlocksP ) with BlocksP ⊆ BT .
If ds(P ) is an edge then it is labelled by P and within BT .
Every lock in BT has exactly one outgoing edge.
There are no cycles of strong edges in ds(P ).



Example: solid v. fragile processes

There is no deadlock scheme for
this lock graph if every process is
solid.

But if the process in blue is fragile,
then there is one!



Example: solid v. fragile processes

There is no deadlock scheme for
this lock graph if every process is
solid.

But if the process in blue is fragile,
then there is one!



Example: weak v. strong edges

1 2

3 4

A deadlock scheme cannot have a
cycle of strong edges as they
represent incompatible runs.

1 2

3 4

A cycle with a weak edge always
represents a set of runs that can be
interleaved.



Exclusive case

Exclusive
An LSS is exclusive if whenever a process can acquire a lock, its only
available actions are acquiring locks.

This means that every acqt operation is an opportunity for a deadlock.

It further restricts the abstract runs:
An abstract run taking both tokens, releasing 2 and blocking on 2...

... implies another one taking one token and blocking on the other...

... in turn implying one blocking without taking any token.

acq1 acq2 rel2 acq2

acq1 acq2 acq2



Exclusive case

Exclusive
An LSS is exclusive if whenever a process can acquire a lock, its only
available actions are acquiring locks.

This means that every acqt operation is an opportunity for a deadlock.

It further restricts the abstract runs:
An abstract run taking both tokens, releasing 2 and blocking on 2...

... implies another one taking one token and blocking on the other...

... in turn implying one blocking without taking any token.

acq1 acq2 rel2 acq2

acq1 acq2

acq2



Exclusive case

Exclusive
An LSS is exclusive if whenever a process can acquire a lock, its only
available actions are acquiring locks.

This means that every acqt operation is an opportunity for a deadlock.

It further restricts the abstract runs:
An abstract run taking both tokens, releasing 2 and blocking on 2...
... implies another one taking one token and blocking on the other...

... in turn implying one blocking without taking any token.

acq1 acq2 rel2 acq2

acq1

acq2

acq2



Exclusive case

Exclusive
An LSS is exclusive if whenever a process can acquire a lock, its only
available actions are acquiring locks.

This means that every acqt operation is an opportunity for a deadlock.

It further restricts the abstract runs:
An abstract run taking both tokens, releasing 2 and blocking on 2...
... implies another one taking one token and blocking on the other...
... in turn implying one blocking without taking any token.

acq1 acq2 rel2 acq2acq1

acq2 acq2



Two key lemmas

Let σ be a locally live strategy for an exclusive LSS.

Lemma
If there is a strong edge t1 → t2 in Gσ then there is also a weak one
t2 → t1.

In particular, every strong cycle can be replaced by a weak one.

Lemma
All processes are fragile with respect to σ.

This allows us to “erase” edges, thus the constraint that all locks have
exactly one outgoing edge becomes at least one.



Two key lemmas

Let σ be a locally live strategy for an exclusive LSS.

Lemma
If there is a strong edge t1 → t2 in Gσ then there is also a weak one
t2 → t1.

In particular, every strong cycle can be replaced by a weak one.

Lemma
All processes are fragile with respect to σ.

This allows us to “erase” edges, thus the constraint that all locks have
exactly one outgoing edge becomes at least one.



Finding cycles

The problem essentially comes down to a game in which:
→ For each process P using tokens t1, t2 Sys chooses a set of edges

between t1 and t2 (one that can be obtained by a local strategy).
→ Env chooses one of those edges (if the set is non-empty), and wins

if all tokens with an incoming edge also have an outgoing one.



Finding cycles

Full edge → will appear no matter the local strategy.
Double dashed edge → an edge will appear but Sys can choose its
orientation.

A best strategy for Sys is to orient edges according to an order on
strongly connected components of the graph of unavoidable edges.



Exclusive case

Theorem
The deadlock avoidance control problem is in PTIME for exclusive LSS
with locally live strategies.

⇒ In quadratic time in the number of states per process and linear
time in the number of processes.

Theorem

The deadlock avoidance control problem is ΣP
2 -complete for exclusive

LSS with general strategies.



Solving the dining philosophers

1

32

4

→ Just pick an order on chopsticks and have all philosophers take
them accordingly!



Solving the dining philosophers

1

32

4

→ Just pick an order on chopsticks and have all philosophers take
them accordingly!



Solving the dining philosophers

1

32

4

→ Just pick an order on chopsticks and have all philosophers take
them accordingly!



Drinking philosophers



Nested locks

Nested locks condition
An LSS satisfies the nested lock condition if all processes acquire and
release locks in a stack-like order, i.e., a process can only release the
last lock it acquired.

Theorem
The deadlock avoidance control problem is NEXPTIME-complete for
LSS respecting the nested lock condition.



Nested locks

Nested locks condition
An LSS satisfies the nested lock condition if all processes acquire and
release locks in a stack-like order, i.e., a process can only release the
last lock it acquired.

Theorem
The deadlock avoidance control problem is NEXPTIME-complete for
LSS respecting the nested lock condition.



Stair decomposition

↓ ↓ ↓

↓ 2 ↓ 1 ↓ 4 ↑ 4 ↑ 1 ↓ 3 ↓ 4 ↑ 4 ↓ 1

2

1 3

4 4 1

We distinguish the acq operations that take a lock that is never
released as well as the last rel operations on the other locks.

The pattern of the run is the word of these ordered operations:
↓ 2 ↓ 3 ↑ 4 ↓ 1.



Stair decomposition

↓ ↓ ↓
↓ 2 ↓ 1 ↓ 4 ↑ 4 ↑ 1 ↓ 3 ↓ 4 ↑ 4 ↓ 1

2

1 3

4 4 1

We distinguish the acq operations that take a lock that is never
released

as well as the last rel operations on the other locks.

The pattern of the run is the word of these ordered operations:
↓ 2 ↓ 3 ↑ 4 ↓ 1.



Stair decomposition

↓ ↓ ↓

↓ 2 ↓ 1 ↓ 4 ↑ 4 ↑ 1 ↓ 3 ↓ 4 ↑ 4 ↓ 1

2

1 3

4 4 1

We distinguish the acq operations that take a lock that is never
released as well as the last rel operations on the other locks.

The pattern of the run is the word of these ordered operations:
↓ 2 ↓ 3 ↑ 4 ↓ 1.



Scheduling = Finding a common order

Theorem
A family of runs (uP )P∈Proc can be scheduled into a global run if and
only if their patterns can be shuffled into a word w such that:

No acqt operation appears more than once.
For all t, all relt operations are before the acqt one (if it exists).

Like for 2LSS, an abstract run for P is a pair (pattern,Blocks) and an
abstract strategy for P is a set of such abstract runs.



Scheduling = Finding a common order

Lemma
Given an abstract strategy for process P , we can check in polynomial
time in the size of that abstract strategy (and exponential in the size of
the LSS) whether it is the abstraction of a local strategy.

From there we proceed as in the 2LSS case:
→ Sys chooses a set of abstract runs for each process (NEXPTIME).

→ We check that those can be achieved by local strategies (EXPTIME).
→ Env chooses an abstract run in each set (EXPTIME).
→ We check that those represent local runs that can be scheduled

into a global one leading to a deadlock (PTIME).



Scheduling = Finding a common order

Lemma
Given an abstract strategy for process P , we can check in polynomial
time in the size of that abstract strategy (and exponential in the size of
the LSS) whether it is the abstraction of a local strategy.

From there we proceed as in the 2LSS case:
→ Sys chooses a set of abstract runs for each process (NEXPTIME).
→ We check that those can be achieved by local strategies (EXPTIME).

→ Env chooses an abstract run in each set (EXPTIME).
→ We check that those represent local runs that can be scheduled

into a global one leading to a deadlock (PTIME).



Scheduling = Finding a common order

Lemma
Given an abstract strategy for process P , we can check in polynomial
time in the size of that abstract strategy (and exponential in the size of
the LSS) whether it is the abstraction of a local strategy.

From there we proceed as in the 2LSS case:
→ Sys chooses a set of abstract runs for each process (NEXPTIME).
→ We check that those can be achieved by local strategies (EXPTIME).
→ Env chooses an abstract run in each set (EXPTIME).
→ We check that those represent local runs that can be scheduled

into a global one leading to a deadlock (PTIME).



NEXPTIME-hardness idea

We reduce the problem of tiling a N ×N (N in binary) square with a
given set of coloured tiles Tiles ⊆ Colours{up,down,left,right}.

The colours have to match between all pairs of adjacent tiles.

We use two sets of locks 0xi , 1
x
i , 0

y
i , 1

y
i and 0xi , 1

x
i , 0

y
i , 1

y
i to encode

coordinates in binary.

We also use one lock t for each tile t ∈ Tiles.



NEXPTIME-hardness idea

die

...

P

acq0x1
acq1x1

acqt1

acqt2

acqt3

...

...

C

live

acq0x1
acq1x1

acq0x1
acq1x1

h
v eq

acqT iles\{ti,tj}

→ Env chooses to
check a vertical,
horizontal or
equality condition.

→ It takes locks
encoding the
coordinates of two
adjacent tiles.

→ P and P get the
remaining bits.

→ They each acquire
a tile, while C
chooses two tiles
to leave and takes
all the others.



NEXPTIME-hardness idea

die

...

P

acq0x1
acq1x1

acqt1

acqt2

acqt3

...

...

C

live

acq0x1
acq1x1

acq0x1
acq1x1

h
v eq

acqT iles\{ti,tj}

→ Env chooses to
check a vertical,
horizontal or
equality condition.

→ It takes locks
encoding the
coordinates of two
adjacent tiles.

→ P and P get the
remaining bits.

→ They each acquire
a tile, while C
chooses two tiles
to leave and takes
all the others.



NEXPTIME-hardness idea

die

...

P

acq0x1
acq1x1

acqt1

acqt2

acqt3

...

...

C

live

acq0x1
acq1x1

acq0x1
acq1x1

h
v eq

acqT iles\{ti,tj}

→ Env chooses to
check a vertical,
horizontal or
equality condition.

→ It takes locks
encoding the
coordinates of two
adjacent tiles.

→ P and P get the
remaining bits.

→ They each acquire
a tile, while C
chooses two tiles
to leave and takes
all the others.



NEXPTIME-hardness idea

die

...

P

acq0x1
acq1x1

acqt1

acqt2

acqt3

...

...

C

live

acq0x1
acq1x1

acq0x1
acq1x1

h
v eq

acqT iles\{ti,tj}

→ Env chooses to
check a vertical,
horizontal or
equality condition.

→ It takes locks
encoding the
coordinates of two
adjacent tiles.

→ P and P get the
remaining bits.

→ They each acquire
a tile, while C
chooses two tiles
to leave and takes
all the others.



Practical prospects

Examples of processes with two mutex can be found
→ In the BSD kernel

→ In the C++ documentation

Implementation of the PTIME algorithms.



Open problems

→ Decidability for two processes or three locks/process

→ PTIME algorithm for 2LSS with locally live strategies

→ Other restrictions on lock usage to prevent passing information



Thank you for your attention!

Avoiding deadlocks in lock-sharing systems April 12th 2022 41 / 41


